以大模型為代表的新一代人工智能技術(shù)正加速推進(jìn)新型工業(yè)化的變革進(jìn)程。2024年1月,國務(wù)院常務(wù)會議研究部署推動人工智能賦能新型工業(yè)化有關(guān)工作,強(qiáng)調(diào)以人工智能和制造業(yè)深度融合為主線,以智能制造為主攻方向,以場景應(yīng)用為牽引,加快重點行業(yè)智能升級,大力發(fā)展智能產(chǎn)品,高水平賦能工業(yè)制造體系。4月,工信部提出從供給側(cè)、需求側(cè)、基礎(chǔ)側(cè)協(xié)同發(fā)力,加快培育面向工業(yè)領(lǐng)域的大模型?梢姡I(yè)大模型已經(jīng)成為人工智能深度賦能新型工業(yè)化的重點方向;不僅能推動生產(chǎn)制造高效化發(fā)展、大幅縮短生產(chǎn)周期,而且能效降低生產(chǎn)制造的成本消耗,推進(jìn)工業(yè)綠色化、集約化發(fā)展。
本文總結(jié)分析了我國工業(yè)大模型發(fā)展現(xiàn)狀,及現(xiàn)階段工業(yè)大模型發(fā)展過程中存在的幾個明顯反差,并提出發(fā)展趨勢展望。
01 我國工業(yè)大模型發(fā)展現(xiàn)狀
當(dāng)前,我國大模型已進(jìn)入發(fā)展加速期,在自然語言處理、機(jī)器視覺和多模態(tài)等各技術(shù)分支上均與國際技術(shù)發(fā)展趨勢同步發(fā)展。在產(chǎn)學(xué)研各方共同推動下,我國已建立起涵蓋理論方法和軟硬件技術(shù)的體系化研發(fā)能力,涌現(xiàn)出一批具有行業(yè)影響力的大模型應(yīng)用,形成了緊跟世界前沿的各種大模型技術(shù)。目前,我國10億參數(shù)規(guī)模以上的大模型數(shù)量已超100個1。行業(yè)大模型深度賦能電子信息、金融、傳媒、文旅、醫(yī)療、交通、政務(wù)等領(lǐng)域。同時,大模型開始向能源、汽車、鋼鐵等工業(yè)領(lǐng)域挺進(jìn),在設(shè)計、研發(fā)、管理等環(huán)節(jié)嶄露頭角。
現(xiàn)階段,國內(nèi)布局工業(yè)大模型的主體可分為四類:AI廠商、工業(yè)技術(shù)服務(wù)商、創(chuàng)新成長型企業(yè)、科研機(jī)構(gòu)/科技巨頭。AI廠商主要基于通用基礎(chǔ)大模型賦能工業(yè)領(lǐng)域,主打“大而全”;創(chuàng)新成長型企業(yè)則發(fā)揮自身在細(xì)分領(lǐng)域的經(jīng)驗沉淀打造垂直行業(yè)大模型,主打“專而精”;工業(yè)技術(shù)服務(wù)商則選擇在既有產(chǎn)品中融入AI能力;科研機(jī)構(gòu)/科技巨頭則在國內(nèi)領(lǐng)先的通用大模型基礎(chǔ)上向工業(yè)領(lǐng)域滲透。據(jù)統(tǒng)計,工業(yè)領(lǐng)域已有99個工業(yè)大模型應(yīng)用案例2。
與國外知名大模型相比,2023年下半年國內(nèi)工業(yè)大模型能力提升明顯。在工業(yè)知識問答、文檔生成等領(lǐng)域,國內(nèi)大模型已取得領(lǐng)先,數(shù)據(jù)分析、代碼理解等領(lǐng)域能力接近;但在工程建模領(lǐng)域,國內(nèi)大模型與國際存在一定差距3。具體參見圖1。
圖1:國內(nèi)外大模型能力對比
資料來源:中國工業(yè)互聯(lián)網(wǎng)研究院《人工智能大模型工業(yè)應(yīng)用準(zhǔn)確性測評》,2024.3
02 我國工業(yè)大模型發(fā)展過程中的四個反差現(xiàn)象
反差1:AI專利具備數(shù)量優(yōu)勢,而制造業(yè)AI普及率低
我國在人工智能專利數(shù)量方面占據(jù)主導(dǎo)地位,但頂級人工智能模型相對較少,且制造企業(yè)AI普及率相對較低。根據(jù)2024斯坦福AI指數(shù)報告,2022年,全球人工智能專利來源中,中國占61.1%,大幅超過美國的20.9%,歐盟和英國僅占2.03%;但 2023 年,全球頂級人工智能模型中,61 個來自美國,歐盟21個,中國15個。另據(jù)凱捷(Capgemini)統(tǒng)計數(shù)據(jù)顯示,日本和美國制造企業(yè)的AI應(yīng)用率分別達(dá)到了30%和28%;相較于這些發(fā)達(dá)國家,中國制造企業(yè) AI普及率尚不足11%。
其主要原因在于,目前國內(nèi)外推出的主流大模型仍為公共數(shù)據(jù)集訓(xùn)練出的基礎(chǔ)大模型,知識面夠廣但不夠?qū),在工業(yè)各垂直領(lǐng)域的性能表現(xiàn)并不突出。根據(jù)中國工業(yè)互聯(lián)網(wǎng)研究院2024年3月發(fā)布的《人工智能大模型工業(yè)應(yīng)用準(zhǔn)確性測評》報告,國內(nèi)外主流大模型的工業(yè)應(yīng)用準(zhǔn)確性平均得分低于60分,處于明顯領(lǐng)先位置的GPT-4、“文心一言”等大模型總體評分也僅在70分上下,可見基礎(chǔ)大模型在賦能新型工業(yè)化方面還有巨大的發(fā)展?jié)摿洼^大的提升空間。
反差2:通用大模型數(shù)量多,而工業(yè)垂直領(lǐng)域落地少
與通用大模型相比,垂直行業(yè)大模型能夠更直接地深入特定行業(yè)與業(yè)務(wù)場景,更精準(zhǔn)地滿足行業(yè)特定的需求,可以彌補(bǔ)通用大模型無法最優(yōu)化適配到垂直行業(yè)中的不足。而對于垂直行業(yè)而言,大模型是一種全新的生產(chǎn)力,賦能行業(yè)全流程的同時,可以改變行業(yè)的業(yè)務(wù)模式及商業(yè)模式,驅(qū)動行業(yè)實現(xiàn)數(shù)據(jù)化轉(zhuǎn)型。因而,垂直行業(yè)應(yīng)用將成為大模型產(chǎn)業(yè)落地的關(guān)鍵賽道。據(jù)不完全統(tǒng)計,截至2023年7月底,國內(nèi)行業(yè)大模型已完成招標(biāo)項目超過60個,探索賦能不同行業(yè)場景的落地方式與應(yīng)用價值,已成為大模型商業(yè)化落地的重要方向。
但從大模型落地行業(yè)領(lǐng)域來看,面向工業(yè)垂直領(lǐng)域的專用模型較少,大模型在工業(yè)垂直場景的應(yīng)用尚不成熟。截至2023年7月,國內(nèi)130家研發(fā)大模型的公司中,通用大模型為78家,占比60%。另外,行業(yè)大模型在金融、傳媒、文旅、政務(wù)、交通等領(lǐng)域的落地應(yīng)用速度較快,其中約15%的大模型都是金融垂直大模型。
這主要是因為,AI大模型應(yīng)用于垂直行業(yè)存在以下問題,限制了實際應(yīng)用效果和行業(yè)場景的拓展:一是缺乏行業(yè)專有知識。不同行業(yè)都有大量區(qū)別于其他行業(yè)的知識、數(shù)據(jù)與流程,大模型需要掌握這些know-how語料才能支撐行業(yè)專屬應(yīng)用。而通用AI大模型為廣泛應(yīng)用場景提供了解決方案,但其缺乏特定行業(yè)的專有知識。二是難以精確控制輸出內(nèi)容。通用AI大模型基于通用數(shù)據(jù)生成的內(nèi)容往往過于普遍化,無法滿足垂直行業(yè)的具體需求。在某些情況下,輸出內(nèi)容可能會偏離問題的實質(zhì),給用戶帶來困惑。三是模型泛化能力不足。人工智能大模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)出色,但在未見過的數(shù)據(jù)上可能泛化能力不足,過度擬合是常見問題,這對大模型在不同行業(yè)落地應(yīng)用帶來一定門檻。
反差3:工業(yè)大模型覆蓋環(huán)節(jié)多,而核心生產(chǎn)應(yīng)用少
全球范圍來看可用于工業(yè)領(lǐng)域的大模型超過30個4,形成語言大模型、專用大模型、多模態(tài)大模型和視覺大模型四類核心模型,通過三種方式賦能工業(yè)企業(yè):基于通用底座直接賦能行業(yè)、基于通用底座進(jìn)行場景化適配調(diào)優(yōu)或形成外掛插件工具、面向工業(yè)或具體任務(wù)針對性開發(fā)。
工業(yè)大模型率先落地的場景基本集中在企業(yè)的研發(fā)/設(shè)計、設(shè)備、管理等環(huán)節(jié),以此提升人機(jī)交互性能及業(yè)務(wù)系統(tǒng)之間的互通效率,但暫未觸及工業(yè)領(lǐng)域核心“生產(chǎn)”環(huán)節(jié)。如大語言模型主要應(yīng)用于工業(yè)問答交互、內(nèi)容生成,以提升任務(wù)處理效率為主;專業(yè)任務(wù)大模型圍繞研發(fā)形成輔助設(shè)計、藥物研發(fā)兩個重點方向,進(jìn)一步增強(qiáng)研發(fā)模式的創(chuàng)新能力;多模態(tài)大模型與視覺大模型則在裝備智能化和視覺識別領(lǐng)域應(yīng)用進(jìn)行初步嘗試。
究其原因,工業(yè)大模型在核心生產(chǎn)環(huán)節(jié)的應(yīng)用受到三個方面的因素制約:一是工業(yè)領(lǐng)域本身門類眾多,各細(xì)分行業(yè)高度碎片化和差異化,大模型難以規(guī)模復(fù)制和推廣,客觀上提高了其成本和落地門檻。二是工業(yè)生產(chǎn)環(huán)境經(jīng)常涉及復(fù)雜的工藝流程、高精度的操作控制以及嚴(yán)苛的安全標(biāo)準(zhǔn)。任何模型預(yù)測或決策的失誤都可能導(dǎo)致生產(chǎn)事故、質(zhì)量問題或經(jīng)濟(jì)損失,因而對可靠性有更嚴(yán)格的要求。三是工業(yè)生產(chǎn)對實時性的要求非常高,很多場景需要模型能夠在毫秒級甚至微秒級的時間內(nèi)做出響應(yīng);而且,由于計算資源的限制,模型的大小和計算復(fù)雜度也需要得到合理控制。這就需要在保證模型性能的同時,盡可能地降低計算復(fù)雜度,以實現(xiàn)高效的實時推理。
因而從工業(yè)企業(yè)的角度,會選擇從外圍環(huán)節(jié)引入大模型,而對核心生產(chǎn)環(huán)節(jié)的應(yīng)用則相對慎重。以化工行業(yè)為例,據(jù)百度智能云相關(guān)資料,大模型主要應(yīng)用于企業(yè)管理、產(chǎn)品質(zhì)檢領(lǐng)域。企業(yè)管理領(lǐng)域利用大模型把行業(yè)里安全生產(chǎn)、管理等各類標(biāo)準(zhǔn),通過大模型知識固化,形成共性的服務(wù)平臺;產(chǎn)品質(zhì)檢領(lǐng)域則主要是在生產(chǎn)過程中需要多輪質(zhì)檢來保障產(chǎn)品質(zhì)量,以此降低成本,提升生產(chǎn)效率。
反差4:對工業(yè)數(shù)據(jù)質(zhì)量要求高,而現(xiàn)有數(shù)據(jù)不完整、不連通
海量、多源、動態(tài)更新的數(shù)據(jù)是訓(xùn)練模型和進(jìn)行數(shù)據(jù)挖掘的必要條件,尤其人工智能大模型的訓(xùn)練需要海量工業(yè)數(shù)據(jù)/語料庫,而且對數(shù)據(jù)規(guī)模、質(zhì)量等的要求很高,因為錯誤或不一致的數(shù)據(jù)可能導(dǎo)致模型訓(xùn)練不穩(wěn)定或性能下降。如預(yù)訓(xùn)練階段,語言大模型需要40TB的中文文本語料;視覺大模型需要100W+工業(yè)圖像;多模態(tài)大模型的效果則與數(shù)據(jù)量強(qiáng)相關(guān),通常需要億級以上規(guī)模的數(shù)據(jù)。不僅如此,大模型訓(xùn)練對數(shù)據(jù)的配比要求也較高,工業(yè)數(shù)據(jù)在所有數(shù)據(jù)的占比需要達(dá)到約10-15%。
而我國在工業(yè)大模型的應(yīng)用推廣中,面臨三個突出問題:一是工業(yè)企業(yè)數(shù)字化程度參差不齊,各場景、環(huán)節(jié)數(shù)據(jù)結(jié)構(gòu)不統(tǒng)一,導(dǎo)致工業(yè)數(shù)據(jù)質(zhì)量參差不齊,缺乏高質(zhì)量的工業(yè)語料數(shù)據(jù)為大模型的微調(diào)訓(xùn)練提供支撐。二是工業(yè)生產(chǎn)過程中的各個環(huán)節(jié)相互交織,數(shù)據(jù)之間的關(guān)聯(lián)性和復(fù)雜性也較高。數(shù)據(jù)的來源、采集方式、時間戳等都會影響數(shù)據(jù)的準(zhǔn)確性和完整性。這種數(shù)據(jù)結(jié)構(gòu)的多樣與質(zhì)量的參差不齊給工業(yè)大模型的訓(xùn)練和應(yīng)用帶來了挑戰(zhàn)。三是工業(yè)企業(yè)間數(shù)據(jù)壁壘嚴(yán)重,限制了數(shù)據(jù)的共享和流通。尤其在核心制造環(huán)節(jié),工業(yè)數(shù)據(jù)通常包含企業(yè)的核心機(jī)密和商業(yè)秘密,如工藝參數(shù)、配方、客戶信息等,因而對數(shù)據(jù)隱私與數(shù)據(jù)安全異常敏感。此外,數(shù)據(jù)共建共享、數(shù)據(jù)產(chǎn)權(quán)界定等機(jī)制不完善,導(dǎo)致數(shù)據(jù)規(guī)模和質(zhì)量無法有效支撐模型訓(xùn)練,一定程度上限制了工業(yè)大模型的應(yīng)用進(jìn)程。
03 工業(yè)大模型發(fā)展展望
大模型向B端尤其是工業(yè)領(lǐng)域應(yīng)用已成為行業(yè)共識。大模型已呈現(xiàn)出以基礎(chǔ)大模型為技術(shù)底座,工業(yè)應(yīng)用為切入點的發(fā)展趨勢。
大模型成本的降低將加速其在工業(yè)領(lǐng)域的應(yīng)用。業(yè)界在積極探索各類模型壓縮技術(shù),在保證模型精度的同時,可以有效減少模型的參數(shù)量、計算復(fù)雜度和存儲需求,從而降低訓(xùn)練和推理成本。近期BAT和科大訊飛等大模型廠商紛紛宣布主力模型免費,表明大模型成本已經(jīng)斷崖式下降,這無疑將加快大模型在工業(yè)領(lǐng)域的滲透速度,并最終提高AI在工業(yè)尤其是制造業(yè)的普及率。據(jù)市場研究機(jī)構(gòu)Market Research Future預(yù)計,從2022至2032年工業(yè)AI市場規(guī)模將以46%的年均復(fù)合增長率高速成長。
定制化大模型將成為更多行業(yè)的選擇。隨著各行各業(yè)對于大模型的深入理解,大模型將更傾向于滿足特定行業(yè)需求,為企業(yè)提供更為精準(zhǔn)的解決方案,就像是為每個行業(yè)打造了一套專屬的“大腦”。
從落地應(yīng)用模式來看,工業(yè)大模型的應(yīng)用模式將是“基礎(chǔ)大模型+工業(yè)APP”,基于少量工業(yè)基礎(chǔ)大模型快速構(gòu)建大量工業(yè)APP滿足碎片化應(yīng)用需求。從而既能依托基礎(chǔ)大模型的結(jié)構(gòu)和知識,又能融合工業(yè)細(xì)分行業(yè)的數(shù)據(jù)和專家經(jīng)驗,加快形成垂直化、場景化、專業(yè)化的應(yīng)用模型,推動各類工業(yè)場景的智能化升級。
工業(yè)企業(yè)對工業(yè)數(shù)據(jù)的管理將會提上一個新臺階。伴隨大模型在各行業(yè)外圍場景落地并逐步向核心生產(chǎn)環(huán)節(jié)滲透,工業(yè)企業(yè)對數(shù)據(jù)的認(rèn)識和理解會更加深入。包括如何合理收集、清洗和管理數(shù)據(jù),如何確保數(shù)據(jù)的質(zhì)量和全面性,如何保障數(shù)據(jù)的隱私和安全等。而基于各行各業(yè)的探索,相關(guān)的機(jī)制和制度保障也會愈加完善。
注釋
1.國家數(shù)據(jù)局局長劉烈宏2024年3月25日在中國發(fā)展高層論壇公布的數(shù)據(jù)。
2.騰訊研究院《工業(yè)大模型應(yīng)用報告》,2024.3。
3.中國工業(yè)互聯(lián)網(wǎng)研究院《人工智能大模型工業(yè)應(yīng)用準(zhǔn)確性測評》,2024.3。
4.工業(yè)互聯(lián)網(wǎng)產(chǎn)業(yè)聯(lián)盟&信通院:工業(yè)大模型技術(shù)應(yīng)用與發(fā)展報告1.0,2023.12。
本文作者
柴雪芳
戰(zhàn)略發(fā)展研究所
一級分析師
碩士,高級經(jīng)濟(jì)師,就職于中國電信研究院,長期從事信息通信行業(yè)市場研究、客戶研究,近年來專注于產(chǎn)品運營管理、數(shù)字化轉(zhuǎn)型等領(lǐng)域。